Problem

Source: 2016 KMO Senior #5

Tags: geometry, incenter, circumcircle



A non-isosceles triangle $\triangle ABC$ has incenter $I$ and the incircle hits $BC, CA, AB$ at $D, E, F$. Let $EF$ hit the circumcircle of $CEI$ at $P \not= E$. Prove that $\triangle ABC = 2 \triangle ABP$.