Problem

Source: 2016 KMO Senior #4

Tags: combinatorics



For a positive integer $n$, $S_n$ is the set of positive integer $n$-tuples $(a_1,a_2, \cdots ,a_n)$ which satisfies the following. (i). $a_1=1$. (ii). $a_{i+1} \le a_i+1$. For $k \le n$, define $N_k$ as the number of $n$-tuples $(a_1, a_2, \cdots a_n) \in S_n$ such that $a_k=1, a_{k+1}=2$. Find the sum $N_1 + N_2+ \cdots N_{k-1}$.