Problem

Source:

Tags: functional equation, Functional inequality, inequalities



Let $ f : [0, 1] \to\ R $ be a function such that :- $1.)$ $f(x) \ge 0$ for all $x$ in $[0,1]$ . $2.)$ $f(1) = 1$ . $3.)$ If $x_1 , x_2$ are in $[0,1]$ such that $x_1 + x_2 \le 1$ , then $f(x_1) + f(x_2) \le f(x_1 + x_2)$ . Show that $f(x) \le 2x $ for all $x$ in $ [0,1] $.