Problem

Source: Kürschák 2015, problem 2

Tags: geometry, angle bisector



Consider a triangle $ABC$ and a point $D$ on its side $\overline{AB}$. Let $I$ be a point inside $\triangle ABC$ on the angle bisector of $ACB$. The second intersections of lines $AI$ and $CI$ with circle $ACD$ are $P$ and $Q$, respectively. Similarly, the second intersection of lines $BI$ and $CI$ with circle $BCD$ are $R$ and $S$, respectively. Show that if $P\neq Q$ and $R\neq S$, then lines $AB$, $PQ$ and $RS$ pass through a point or are parallel.