Let $a,b,c$ be positive real numbers such that $a+b+c=2005$. Find the minimum value of the expression: $$E=a^{2006}+b^{2006}+c^{2006}+\frac{(ab)^{2004}+(bc)^{2004}+(ca)^{2004}}{(abc)^{2004}}$$
Problem
Source: Moldova national olympiad 2006, grade 9, pr.1
Tags: inequalities
21.09.2016 09:56
21.09.2016 09:59
dogofmath wrote:
Almost all students at the olympiad did this mistake: In your solution the equality case is when $a=b=c=1$ but in this case we won't have $a+b+c=2005$...
21.09.2016 12:09
Snakes wrote: Let $a,b,c$ be positive real numbers such that $a+b+c=2005$. Find the minimum value of the expression: $$E=a^{2006}+b^{2006}+c^{2006}+\frac{(ab)^{2004}+(bc)^{2004}+(ca)^{2004}}{(abc)^{2004}}$$ quykhtn-qa1 have: $ (ab)^{2004}+(bc)^{2004}+(ca)^{2004} \ge 3 \sqrt[3]{(abc)^{4008}}$ and $ abc \le \frac{2005^3}{3^3}$, $ \sum \ a^{2006}\ge \frac{2005^{2006}}{9}$ Then$ LHS \ge \frac{2005^{2006}}{9}+ \frac{3^{2005}}{2005^{2004}}$
21.09.2016 18:53
Radon does all the job here: $(\star)\sum{a^{2006}}\ge \frac{2005^{2006}}{3^{2005}}$ $(\star\star)\sum{\frac{1}{a^{2004}}}\ge \frac{3^{2005}}{2005^{2004}}$ Summing $(\star)$ and $(\star\star)$ we get the minimum value of $E$.
21.09.2016 18:55
sqing wrote: $ \sum \ a^{2006}\ge \frac{2005^{2006}}{9}$ Isn't this wrong?
21.09.2016 20:54
Its just Jensen.