In the trapezoid $ABCD$ with bases $AB$ and $CD$, let $M$ be the midpoint of side $DA$. If $BC=a$, $MC=b$ and $\angle MCB=150^\circ$, what is the area of trapezoid $ABCD$ as a function of $a$ and $b$?
Problem
Source: CentroAmerican & Caribbean MO 1999 Q4
Tags: geometry, trapezoid, function, trigonometry, geometry proposed
25.01.2007 08:16
This is an easy exercise! Indeed, it's not difficult to see that $(BCM)=\frac{1}{2}(ABCD)$. But $(BCM)=\frac{1}{2}BC \cdot CM \sin 150^{\circ}=\frac{1}{4}ab$. Hence $(ABCD)=\frac{1}{8}ab$.
29.01.2007 06:13
I'm sorry, the conclusion of this solution should be: Hence $(ABCD)=\frac{1}{2}ab$.
29.01.2007 07:12
Jutaro wrote: This is an easy exercise! Of course, with trig. all is easy.
31.01.2007 00:01
Anyway, I think a solution that avoids the use of the trigonometric formula for the area of a triangle is still easy.
02.02.2007 13:15
Let $N$ be midpoint of $BC$.Then, $A_{MNC}$=$\frac{\frac{a}{2}\cdot{b}\cdot{sin150^{\circ}}}{2}=\frac{{a}\cdot{b}}{8}$ and also $A_{MNC}=A_{BMN}=\frac{a\cdot{b}}{8}$.Then $A_{BMC}$=$\frac{a\cdot{b}}{4}$ and also we know that, $A_{BMC}$=$A_{AMB}$+$A_{MDC}$ so $A_{ABCD}$=$A_{BMC}$+$A_{AMB}$+$A_{MDC}$=${2}\cdot{A_{BMC}}$ =$2\cdot{\frac{ab}{4}}$=$\frac{ab}{2}$
10.04.2010 08:48
Sorry to revive such an old thread but I don't understand why $ [BCM] = \frac{1}{2} [ABCD]$..
11.04.2010 03:07
Quote: Let $ ABCD$ be a trapezoid with $ AB\parallel CD$ . Denote the length $ h$ of the altitude of the trapezoid. Consider the points $ M\in (AD)\ ,\ N\in (BC)$ so that $ MN\parallel AB$ . Prove that $ [MBC] = \frac h2\cdot MN$ . In the particular case when $ M$ is the midpoint of the side $ [AD]$ obtain that $ [ABCD] = 2\cdot [MBC]$ .