Problem

Source: 11-th Taiwanese Mathematical Olympiad 2002

Tags: inequalities unsolved, inequalities



Suppose $x,y,,a,b,c,d,e,f$ are real numbers satifying i)$\max{(a,0)}+\max{(b,0)}<x+ay+bz<1+\min{(a,0)}+\min{(b,0)}$, and ii)$\max{(c,0)}+\max{(d,0)}<cx+y+dz<1+\min{(c,0)}+\min{(d,0)}$, and iii)$\max{(e,0)}+\max{(f,0)}<ex+fy+z<1+\min{(e,0)}+\min{(f,0)}$. Prove that $0<x,y,z<1$.