Problem

Source: 7-th Taiwanese Mathematical Olympiad 1998

Tags: symmetry, combinatorics unsolved, combinatorics



Let $ m,n$ be positive integers, and let $ F$ be a family of $ m$-element subsets of $ \{1,2,...,n\}$ satisfying $ A\cap B \not = \emptyset$ for all $ A,B\in F$. Determine the maximum possible number of elements in $ F$.