Problem

Source: Korean Summer Program Practice Test 2016 7

Tags: algebra, geometry, parallelogram



A infinite sequence $\{ a_n \}_{n \ge 0}$ of real numbers satisfy $a_n \ge n^2$. Suppose that for each $i, j \ge 0$ there exist $k, l$ with $(i,j) \neq (k,l)$, $l - k = j - i$, and $a_l - a_k = a_j - a_i$. Prove that $a_n \ge (n + 2016)^2$ for some $n$.