Problem

Source: Korean Summer Program Practice Test 2016 6

Tags: number theory



A finite set $S$ of positive integers is given. Show that there is a positive integer $N$ dependent only on $S$, such that any $x_1, \dots, x_m \in S$ whose sum is a multiple of $N$, can be partitioned into groups each of whose sum is exactly $N$. (The numbers $x_1, \dots, x_m$ need not be distinct.)