Problem

Source: Korean Summer Program Practice Test 2016 4

Tags: combinatorics



Two integers $0 < k < n$ and distinct real numbers $a_1, a_2, \dots ,a_n$ are given. Define the sets as the following, where all indices are modulo $n$. \begin{align*} A &= \{ 1 \le i \le n : a_i > a_{i-k}, a_{i-1}, a_{i+1}, a_{i+k} \text{ or } a_i < a_{i-k}, a_{i-1}, a_{i+1}, a_{i+k} \} \\ B &= \{ 1 \le i \le n : a_i > a_{i-k}, a_{i+k} \text{ and } a_i < a_{i-1}, a_{i+1} \} \\ C &= \{ 1 \le i \le n ; a_i > a_{i-1}, a_{i+1} \text{ and } a_i < a_{i-k}, a_{i+k} \} \end{align*}Prove that $\lvert A \rvert \ge \lvert B \rvert + \lvert C \rvert$.