Let $a$ be rational and $b,c,d$ are real numbers, and let $f: \mathbb{R}\to [-1.1]$ be a function satisfying $f(x+a+b)-f(x+b)=c[x+2a+[x]-2[x+a]-[b]]+d$ for all $x$. Show that $f$ is periodic.
Source: 6-th Taiwanese Mathematical Olympiad 1997
Tags: function, algebra unsolved, algebra
Let $a$ be rational and $b,c,d$ are real numbers, and let $f: \mathbb{R}\to [-1.1]$ be a function satisfying $f(x+a+b)-f(x+b)=c[x+2a+[x]-2[x+a]-[b]]+d$ for all $x$. Show that $f$ is periodic.