Problem

Source: 6-th Taiwanese Mathematical Olympiad 1997

Tags: number theory unsolved, number theory



Show that every number of the form $2^{p}3^{q}$ , where $p,q$ are nonnegative integers, divides some number of the form $a_{2k}10^{2k}+a_{2k-2}10^{2k-2}+...+a_{2}10^{2}+a_{0}$, where $a_{2i}\in\{1,2,...,9\}$