Problem

Source: CGMO 2016 Q7

Tags: geometry, incenter, circumcircle



In acute triangle $ABC, AB<AC$, $I$ is its incenter, $D$ is the foot of perpendicular from $I$ to $BC$, altitude $AH$ meets $BI,CI$ at $P,Q$ respectively. Let $O$ be the circumcenter of $\triangle IPQ$, extend $AO$ to meet $BC$ at $L$. Circumcircle of $\triangle AIL$ meets $BC$ again at $N$. Prove that $\frac{BD}{CD}=\frac{BN}{CN}$.


Attachments: