Problem

Source: CGMO 2016 Q8

Tags: number theory, analytic geometry, number theory unsolved



Let $\mathbb{Q}$ be the set of rational numbers, $\mathbb{Z}$ be the set of integers. On the coordinate plane, given positive integer $m$, define $$A_m = \left\{ (x,y)\mid x,y\in\mathbb{Q}, xy\neq 0, \frac{xy}{m}\in \mathbb{Z}\right\}.$$For segment $MN$, define $f_m(MN)$ as the number of points on segment $MN$ belonging to set $A_m$. Find the smallest real number $\lambda$, such that for any line $l$ on the coordinate plane, there exists a constant $\beta (l)$ related to $l$, satisfying: for any two points $M,N$ on $l$, $$f_{2016}(MN)\le \lambda f_{2015}(MN)+\beta (l)$$