Problem

Source: China Beijing ,13 Aug 2016

Tags: Sequence, inequalities



Define a sequence $\{a_n\}$ by\[S_1=1,\ S_{n+1}=\frac{(2+S_n)^2}{ 4+S_n} (n=1,\ 2,\ 3,\ \cdots).\]Where $S_n$ the sum of first $n$ terms of sequence $\{a_n\}$. For any positive integer $n$ ,prove that\[a_{n}\ge \frac{4}{\sqrt{9n+7}}.\]