Problem

Source: 6-th Taiwanese Mathematical Olympiad 1997

Tags: function, number theory proposed, number theory



Find all positive integers $k$ for which there exists a function $f: \mathbb{N}\to\mathbb{Z}$ satisfying $f(1997)=1998$ and $f(ab)=f(a)+f(b)+kf(\gcd{(a,b)})\forall a,b$.