Problem

Source: 4-th Taiwanese Mathematical Olympiad 1995

Tags: geometry, circumcircle, geometry unsolved



Let $P$ be a point on the circumcircle of a triangle $A_{1}A_{2}A_{3}$, and let $H$ be the orthocenter of the triangle. The feet $B_{1},B_{2},B_{3}$ of the perpendiculars from $P$ to $A_{2}A_{3},A_{3}A_{1},A_{1}A_{2}$ lie on a line. Prove that this line bisects the segment $PH$.