Problem

Source: 4-th Taiwanese Mathematical Olympiad 1995

Tags: algebra, polynomial, algebra unsolved



Let $m_{1},m_{2},...,m_{n}$ be mutually distinct integers. Prove that there exists a $f(x)\in\mathbb{Z}[x]$ of degree $n$ satisfying the following two conditions: a)$f(m_{i})=-1\forall i=1,2,...,n$. b)$f(x)$ is irreducible.