Problem

Source: 4-th Taiwanese Mathematical Olympiad 1995

Tags: inequalities, algebra, polynomial, algebra proposed



Let $P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x]$ , where $a_{n}=1$. The roots of $P(x)$ are $b_{1},b_{2},...,b_{n}$, where $|b_{1}|,|b_{2}|,...,|b_{j}|>1$ and $|b_{j+1}|,...,|b_{n}|\leq 1$. Prove that $\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}$.