Problem

Source: Sharygin geometry olympiad 2016, grade 10, Final Round, Problem 8.

Tags: geometry, geometry proposed



Let $ABC$ be a non-isosceles triangle, let $AA_1$ be its angle bisector and $A_2$ be the touching point of the incircle with side $BC$. The points $B_1,B_2,C_1,C_2$ are defined similarly. Let $O$ and $I$ be the circumcenter and the incenter of triangle $ABC$. Prove that the radical center of the circumcircle of the triangles $AA_1A_2, BB_1B_2, CC_1C_2$ lies on the line $OI$.