Let $O$ and $I$ be the circumcenter and incenter of triangle $ABC$. The perpendicular from $I$ to $OI$ meets $AB$ and the external bisector of angle $C$ at points $X$ and $Y$ respectively. In what ratio does $I$ divide the segment $XY$?
Problem
Source: Sharygin Geometry Olympiad, Final Round 2016, Problem 3 grade 9
Tags: geometry
04.08.2016 17:08
05.10.2016 21:55
14.12.2016 09:08
Let $ \triangle I_aI_bI_c $ be the excentral triangle of $ \triangle ABC $ and $ \overline{DEF} $ be the perspectrix of $ \triangle ABC, $ $ \triangle I_aI_bI_c. $ It's well-known that $ \overline{DEF} $ is perpendicular to $ OI $ $ \Longrightarrow $ $ \overline{DEF} $ $ \parallel $ $ XY, $ so notice $ F(D,X;C,I_c) = -1 $ we get the reflection $ Z $ of $ Y $ in $ X $ lies on $ I_cF, $ hence combining $ (X,Y;I,Z) = F(A,C;I,I_c) = -1 $ we conclude that $ IY $ $ = $ $ 2IX. $
Attachments:

25.12.2016 20:56
TelvCohl wrote: Let $ \triangle I_aI_bI_c $ be the excentral triangle of $ \triangle ABC $ and $ \overline{DEF} $ be the perspectrix of $ \triangle ABC, $ $ \triangle I_aI_bI_c. $ It's well-known that $ \overline{DEF} $ is perpendicular to $ OI $ $ \Longrightarrow $ $ \overline{DEF} $ $ \parallel $ $ XY, $ so notice $ F(D,X;C,I_c) = -1 $ we get the reflection $ Z $ of $ Y $ in $ X $ lies on $ I_cF, $ hence combining $ (X,Y;I,Z) = F(A,C;I,I_c) = -1 $ we conclude that $ IY $ $ = $ $ 2IX. $ Can you give me the proof of the well known identity? Sorry if it's too obvious.
25.12.2016 22:11
Let $V$ be the circumcenter of $I_aI_bI_c$, since $DI_b \times DI_c = DB\times DC$, so $D$ lies on the radical axis of $(I_aI_bI_c),(ABC)$, similarly $E,F$ lie on it too. Note $I,O,V$ are collinear on the Euler line of $\triangle I_aI_bI_c$, hence $\overline{DEF} \perp \overline{IOV}$.
25.07.2017 01:52
Another solution to the problem is as follows: First let $M$ be the midpoint of $IY$. We will prove that $\measuredangle XOI= \measuredangle IOM$ and the conclusion will follow. Let $K$ be the midpoint of line segment $AB$. We have that $\measuredangle OKX= \measuredangle OIX=90^{\circ} \Rightarrow O,X,K,I $ are concyclic. Therefore $\measuredangle BKI= \measuredangle XOI$. Now because $\measuredangle ICY= 90^{\circ}$ point $M$ lies on the perpendicular bisector of $CI$. Now let $AI \cap \omega=M_A, BI \cap \omega=M_B$. It is easy to check that $M_{A}M_{B}$ is the perpendicular bisector of $CI \Rightarrow M \in M_{A}M_{B}$. Let N be the midpoint of line segment $M_{A}M_{B}$. We have that$\measuredangle OLM=90^{\circ}=\measuredangle OIM$. Therefore $O,N,M,I$ are concyclic $\Rightarrow \measuredangle INM= \measuredangle IOM$ , but $\triangle IM_{B}M_{A} \sim \triangle IAB$, which means $\measuredangle ILM=\measuredangle IKB$. Hence $\measuredangle XOI=\measuredangle IOM$ as desired.
05.06.2018 15:40
Dear Mathlinkers, also at http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=160902 Sincerely Jean-Louis
21.07.2018 18:21
My solution: Let $AI \cap \odot (ABC) = T, BI \cap \odot (ABC) = Z, ZT \cap XY = M, ZT \cap CI = W$. By Fact 5, $TI = TC$ and $ZI = ZC$ $\Rightarrow ZT$ is the perpendicular bisector of $CI$ $\Rightarrow W$ is the midpoint of $CI$. Also, By Fact 5, $T$ is the midpoint of $II_A$, where $I_A$ is the $A$-excenter of $\triangle ABC$ $\Rightarrow M$ is the midpoint of $CI$. Now, Let $XY \cap \odot (ABC) = U,V \Rightarrow$ As $OI \perp UV, I$ is the midpoint of $UV$. Thus, By Butterfly Theorem on the lines $ZB$ and $AT$, we get that $I$ is the midpoint of $XM \Rightarrow XI:IY = 1:2$
11.07.2020 05:30
See my explanation of this problem on my Youtube channel here. This was a really nice one! https://www.youtube.com/watch?v=UZ55y4fQbmk