Problem

Source: 2-nd Taiwanese Mathematical Olympiad 1993

Tags: number theory unsolved, number theory



Assume $A=\{a_{1},a_{2},...,a_{12}\}$ is a set of positive integers such that for each positive integer $n \leq 2500$ there is a subset $S$ of $A$ whose sum of elements is $n$. If $a_{1}<a_{2}<...<a_{12}$ , what is the smallest possible value of $a_{1}$?