Problem

Source: Vietnam TST 2016

Tags: algebra, polynomial, linear algebra



Given $16$ distinct real numbers $\alpha_1,\alpha_2,...,\alpha_{16}$. For each polynomial $P$, denote \[ V(P)=P(\alpha_1)+P(\alpha_2)+...+P(\alpha_{16}). \]Prove that there is a monic polynomial $Q$, $\deg Q=8$ satisfying: i) $V(QP)=0$ for all polynomial $P$ has $\deg P<8$. ii) $Q$ has $8$ real roots (including multiplicity).