Problem

Source: IMO Shortlist 2005 Combinatorics problem C3; 2nd German pre-TST 2006, problem 3

Tags: combinatorics, rectangle, matrix, counting, graph theory, IMO Shortlist, Hi



Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called adjacent if they have a common edge, and a path is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called non-intersecting if they don't share any common squares. Each unit square of the rectangular board can be colored black or white. We speak of a coloring of the board if all its $mn$ unit squares are colored. Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge. Prove that $N^{2}\geq M\cdot 2^{mn}$.