Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$.
HIDE: Diagram [asy][asy]import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2); draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); /* draw figures */ draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq); draw(circle((3.,0.7178452373968209), 3.0846882800136055)); draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345)); draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566)); draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951)); draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2")); draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108)); draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088)); /* dots and labels */ dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle); label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.6,0.05), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor); dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle); label("$D$", (2.3,-0.7), NE * labelscalefactor); dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle); label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor); dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle); label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor); dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle); label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor); dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle); label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy]Problem
Source: Greek TST,2012,Pr.2
Tags: geometry, perpendicular bisector, angle bisector
23.05.2016 17:40
Let $M\equiv AD\cap \odot (ABC)$ and let $T'\equiv LD\cap \odot (ABC)$ and $S'\equiv KD\cap \odot ABC$ $\Longrightarrow$ since $LA=LD$ $\Longrightarrow$ $DM$ $=$ $DT'$, so from $180^{\circ}-\measuredangle BT'L=\measuredangle BAL=\measuredangle DBL$ we get $\measuredangle BT'D=\measuredangle BDT'$ $\Longrightarrow$ $BD$ $=$ $BT'$ hence $T'$ $=$ $T$ similarly $S'=S$ $\Longrightarrow$ so from $MT$ $=$ $MS$ and $MB=MC$ we get $TS\parallel BC$ $\Longrightarrow$ $\measuredangle BAT$ $=$ $\measuredangle BCT$ $=$ $\measuredangle CBS$ $=$ $\measuredangle CAS$ hence $\measuredangle{BAT}$ $=$ $\measuredangle{CAS}$.
23.05.2016 18:55
first $\measuredangle LKD= \measuredangle LKA=\measuredangle LSA=\measuredangle LAS =\measuredangle LKS$ so $K,D,S$ collinear, analog $L,D,T$ collinear $\measuredangle ATL=\measuredangle ASL=\measuredangle LSA = \measuredangle LTS$ so $TL$ is the angular bisector of $STA$ analog $SK$ is the angular bisector of $AST$ so $D$ is the incentre of $\Delta ATS$ so $\measuredangle TAD=\measuredangle SAD\implies \measuredangle{BAT}=\measuredangle{CAS}$
19.06.2019 23:43
Let $AD \cap \odot (ABC)=M$ $\implies$ $D$ is orthocenter WRT $\Delta KLM$ $\implies $ $T - D - L$ and $K - D -S$ and since, $MT=MS$ $\implies$ $TS||BC$
12.03.2020 16:19
So let's start off by extending $AD$,till it hits the circumcircle.Let that point be $M$.Now let $\angle BAT = x$ and $\angle CAS = y$. We know that the quads $BCAK,CBAL$ are cyclic.Thus we know that $\angle BKA = 180- \angle C$ and $\angle CLA = 180 - \angle B$. I will focus on one side. As we know $\angle BKT = \angle BAT = x$,thus we know that $\angle TKA = 180-\angle C - x$.Thus from the diagram we know that $\angle TEA = \frac{1}{2} \angle TKA = 90 - \frac{\angle C + x}{2} $,and from the cyclic quad $TDAE$ we get that $\angle TDA = 180 - \angle TEA = 90 + \frac{\angle C + x}{2} $. If we do the same thing from the other side(that is focus on the cyclic quad $SDAF$ we get that $\angle SDA = 90 + \frac{\angle B + y}{2} $ Now we know that: $$ \angle TDS = 360- \angle TDA - \angle SDA = 360 - 90 - \frac{\angle C + x}{2} - 90 - \frac{\angle B + y}{2} = 180 - \frac{\angle C + \angle B + x +y}{2} = 180 - \frac{180-\angle A + x +y}{2} = 90 + \frac{\angle A - x -y}{2} $$But notice that $\angle TAS = \angle A - x - y $ Thus we can conclude that $D$ is the incenter of the $\triangle TAS$ ( Because of the angle and because $D \in AM$) Thus we can conclude $MT = MS$ Thus we can use this useful lemma:
Now back to the problem. Using this lemma we see that $SC = BT$,and now finally we have proven that $\angle BAT = \angle CAS$......
27.11.2021 07:32
T,D,L collinear K,D,S collinear
17.11.2022 18:05
lazizbek42 wrote: T,D,L collinear K,D,S collinear The conclusion is easy to be seen in the figure,but how to prove it?