Problem

Source: All russian olympiad 2016,Day2,grade 11,P6

Tags: graph theory, number theory, combinatorics



There are $n>1$ cities in the country, some pairs of cities linked two-way through straight flight. For every pair of cities there is exactly one aviaroute (can have interchanges). Major of every city X counted amount of such numberings of all cities from $1$ to $n$ , such that on every aviaroute with the beginning in X, numbers of cities are in ascending order. Every major, except one, noticed that results of counting are multiple of $2016$. Prove, that result of last major is multiple of $2016$ too.