Problem

Source: Russia national 2016

Tags: inequalities, algebra



All russian olympiad 2016,Day 2 ,grade 9,P8 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{a^2b^2c^2d^2}$$All russian olympiad 2016,Day 2,grade 11,P7 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that $$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\le\frac{1}{a^3b^3c^3d^3}$$Russia national 2016


Attachments: