Problem

Source: 2016 CMO #1

Tags: Sequence



The integers $1, 2, 3, \ldots, 2016$ are written on a board. You can choose any two numbers on the board and replace them with their average. For example, you can replace $1$ and $2$ with $1.5$, or you can replace $1$ and $3$ with a second copy of $2$. After $2015$ replacements of this kind, the board will have only one number left on it. (a) Prove that there is a sequence of replacements that will make the final number equal to $2$. (b) Prove that there is a sequence of replacements that will make the final number equal to $1000$.