Problem

Source: China Team Selection Test 2016 Test 2 Day 2 Q4

Tags: number theory, floor function, Hi



Set positive integer $m=2^k\cdot t$, where $k$ is a non-negative integer, $t$ is an odd number, and let $f(m)=t^{1-k}$. Prove that for any positive integer $n$ and for any positive odd number $a\le n$, $\prod_{m=1}^n f(m)$ is a multiple of $a$.