Placing $n \in {\mathbb N}$ circles with radius $1$ $unit$ inside a square with side $100$ $unit$ such that, whichever line segment with lenght $10$ $unit$ intersect at least one circle. Prove that $$n \geq 416$$
Source:
Tags: geometry, combinatorics, combinatorial geometry
Placing $n \in {\mathbb N}$ circles with radius $1$ $unit$ inside a square with side $100$ $unit$ such that, whichever line segment with lenght $10$ $unit$ intersect at least one circle. Prove that $$n \geq 416$$