Problem

Source: 2016 Korea Winter Program Test1 Day1 #2

Tags: rectangle, combinatorics, square grid



Given an integer $n\geq 3$. For each $3\times3$ squares on the grid, call this $3\times3$ square isolated if the center unit square is white and other 8 squares are black, or the center unit square is black and other 8 squares are white. Now suppose one can paint an infinite grid by white or black, so that one can select an $a\times b$ rectangle which contains at least $n^2-n$ isolated $3\times 3$ square. Find the minimum of $a+b$ that such thing can happen. (Note that $a,b$ are positive reals, and selected $a\times b$ rectangle may have sides not parallel to grid line of the infinite grid.)