Problem

Source: 2016 Korea Winter Program Test1 Day1 #4

Tags: polynomial, number theory, number theory proposed, algebra



$p(x)$ is an irreducible polynomial with integer coefficients, and $q$ is a fixed prime number. Let $a_n$ be a number of solutions of the equation $p(x)\equiv 0\mod q^n$. Prove that we can find $M$ such that $\{a_n\}_{n\ge M}$ is constant.