Problem

Source: 2016 Korean Winter Camp 2nd Test #7

Tags: geometry, algebra, conics



Let there be a triangle $\triangle ABC$ with $BC=a$, $CA=b$, $AB=c$. Let $T$ be a point not inside $\triangle ABC$ and on the same side of $A$ with respect to $BC$, such that $BT-CT=c-b$. Let $n=BT$ and $m=CT$. Find the point $P$ that minimizes $f(P)=-a \cdot AP + m \cdot BP + n \cdot CP$.