Problem

Source: 2016 Korea Winter Camp 1st Test #6

Tags: inequalities



Let $a_i, b_i$ ($1 \le i \le n$, $n \ge 2$) be positive real numbers such that $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$. Prove that $\sum_{i=1}^n \frac{(a_{i+1}+b_{i+1})^2}{n(a_i-b_i)^2+4(n-1)\sum_{j=1}^n a_jb_j} \ge \frac{1}{n-1}$