Problem

Source: 2016 Korea Winter Camp 2nd Test #5

Tags: geometry, perpendicular bisector



Let there be an acute triangle $ABC$ with orthocenter $H$. Let $BH, CH$ hit the circumcircle of $\triangle ABC$ at $D, E$. Let $P$ be a point on $AB$, between $B$ and the foot of the perpendicular from $C$ to $AB$. Let $PH \cap AC = Q$. Now $\triangle AEP$'s circumcircle hits $CH$ at $S$, $\triangle ADQ$'s circumcircle hits $BH$ at $R$, and $\triangle AEP$'s circumcircle hits $\triangle ADQ$'s circumcircle at $J (\not=A)$. Prove that $RS$ is the perpendicular bisector of $HJ$.