Problem

Source: CHKMO

Tags: algebra



Let $a_1,a_2,\cdots,a_n$ be a sequence of real numbers lying between $1$ and $-1$, i.e. $-1<a_i<1$, for $1\leq i \leq n$ and such that (i) $a_1+a_2+\cdots+a_n=0$ (ii) $a_1^2+a_2^2+\cdots+a_n^2=40$ Determine the smallest possible value of $n$