Problem

Source: AZE IZHO 2015 TST

Tags: geometry, incenter, angle bisector



The incircle of triangle $ABC$ touches $AC$ and $BC$ respectively $P$ and $Q$. Let $N$ and $M$ be the midpoints of the sides $AC$ and $BC$ respectively.$AM$ and $BP$,$BN$ and $AQ$ intersects at the points $X$ and $Y$ respectively. If the points $C,X$ and $Y$ are collinear , then prove that $CX$ is the angle bisector of $\angle ACB$.