Problem

Source: Cono Sur 2008 #1

Tags: number theory, cono sur



We define $I(n)$ as the result when the digits of $n$ are reversed. For example, $I(123)=321$, $I(2008)=8002$. Find all integers $n$, $1\leq{n}\leq10000$ for which $I(n)=\lceil{\frac{n}{2}}\rceil$. Note: $\lceil{x}\rceil$ denotes the smallest integer greater than or equal to $x$. For example, $\lceil{2.1}\rceil=3$, $\lceil{3.9}\rceil=4$, $\lceil{7}\rceil=7$.