Problem

Source:

Tags: algebra unsolved, algebra



$a_{n}$ is a sequence of positive integers such that, for every $n\geq 1$, $0<a_{n+1}-a_{n}<\sqrt{a_{n}}$. Prove that for every $x,y\in{R}$ such that $0<x<y<1$ $x< \frac{a_{k}}{a_{m}}<y$ we can find such $k,m\in{Z^{+}}$.