izat wrote:
Find all functions $ f:R \implies R $ , such for all $x,y,z$
$f(xy)+f(xz)\geq f(x)f(yz) + 1$
Let $P(x,y,z)$ be the assertion $f(xy)+f(xz)\ge f(x)f(yz)+1$
$P(0,0,0)$ $\implies$ $f(0)=1$
$P(1,1,1)$ $\implies$ $f(1)=1$
Let $x\ne 0$ : $P(x,0,\frac 1x)$ $\implies$ $1\ge f(x)$ and $P(1,0,x)$ $\implies$ $f(x)\ge 1$
And so $\boxed{f(x)=1\text{ }\forall x}$ which indeed is a solution