Problem

Source:

Tags: geometry



Let $\Gamma$ be a circle and $AB$ be a diameter. Let $l$ be a line outside the circle, and is perpendicular to $AB$. Let $X$, $Y$ be two points on $l$. If $X'$, $Y'$ are two points on $l$ such that $AX$, $BX'$ intersect on $\Gamma$ and such that $AY$, $BY'$ intersect on $\Gamma$. Prove that the circumcircles of triangles $AXY$ and $AX'Y'$ intersect at a point on $\Gamma$ other than $A$, or the three circles are tangent at $A$.