Let $ABCD$ be inscribed in a circle with center $O$. Let $E$ be the intersection of $AC$ and $BD$. $M$ and $N$ are the midpoints of the arcs $AB$ and $CD$ respectively (the arcs not containing any other vertices). Let $P$ be the intersection point of $EO$ and $MN$. Suppose $BC=5$, $AC=11$, $BD=12$, and $AD=10$. Find $\frac{MN}{NP}$