Find the largest possible positive integer $n$ , so that there exist$n$ distinct positive real numbers $x_1,x_2,...,x_n$ satisfying the following inequality : for any $1\le i,j \le n,$ $(3x_i-x_j) (x_i-3x_j)\geq (1-x_ix_j)^2$
Source: Honk Kong TST 1
Tags: inequalities
Find the largest possible positive integer $n$ , so that there exist$n$ distinct positive real numbers $x_1,x_2,...,x_n$ satisfying the following inequality : for any $1\le i,j \le n,$ $(3x_i-x_j) (x_i-3x_j)\geq (1-x_ix_j)^2$