Problem

Source: CGMO 2015 Q1

Tags: geometry, circumcircle



Let $\triangle ABC$ be an acute-angled triangle with $AB>AC$, $O$ be its circumcenter and $D$ the midpoint of side $BC$. The circle with diameter $AD$ meets sides $AB,AC$ again at points $E,F$ respectively. The line passing through $D$ parallel to $AO$ meets $EF$ at $M$. Show that $EM=MF$.