Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$
Problem
Source: China Shenzhen ,13 Aug 2015
Tags: Inequality, algebra, inequalities, China
13.08.2015 11:29
14.08.2015 05:37
sqing wrote: Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$ $n=2:$ $\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}<\frac{1}{x_1x_2}\left(x_2\sqrt{1-x^2_1}+x_2\sqrt{1-x^2_1}\right)\leq\frac{1}{x_1x_2}\left(\frac{x^2_2+1-x^2_1}{2}+ \frac{x^2_1+1-x^2_2}{2}\right)=\frac{1}{x_1x_2}.$
14.08.2015 15:31
sqing wrote: Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$ The problem is equivalent to Let $x_1,x_2,\cdots,x_n >0$ , $n\geq2$. Prove that$$\sqrt{x_1(x_1+1)}+\sqrt{x_2(x_2+1)}+\cdots+ \sqrt{x_n(x_n+1)}<\sqrt{n-1}\cdot(x_1+1)( x_2+1) \cdots (x_n+1).$$
25.07.2019 21:48
YlOwOlY wrote:
Where did you get $k^{m+1}$ in the denominator?
05.09.2021 16:26
Any other solution? I think in #2 Bernoulli's ineq was applied in the reverse direction.
07.01.2025 01:47
This is fairly straightforward with induction. For the $n=2$ case, \[\left(a\sqrt{1-b} + b\sqrt{1-a}\right)^2 < \left(a^2+1-a\right)\left(b^2+1-b\right) < 1\]by Cauchy-Schwarz. It turns out the inductive step works the same way: \begin{align*} \sum_{i=1}^n \frac{\sqrt{1-x_i}}{x_i} &< \frac{\sqrt{n-2}}{x_1x_2 \cdots x_{n-1}} + \frac{\sqrt{1-x_n}}{x_n} \\ &= \frac{x_n\sqrt{n-2}+x_1x_2\cdots x_{n-1}\sqrt{1-x_n}}{x_1x_2 \cdots x_n} \\ &\leq \frac{\sqrt{\left(x_n^2+1-x_n\right)\left(n-2+(x_1x_2 \cdots x_{n-1})^2\right)}}{x_1x_2 \cdots x_n} \\ &< \frac{\sqrt{n-1}}{x_1x_2 \cdots x_n} \end{align*}as $x_1 x_2 \cdots x_{n-1} < 1$ by assumption.