Problem

Source: China Shenzhen ,13 Aug 2015

Tags: Inequality, algebra, inequalities, China



Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$