Let $a\in(0,1)$ ,$f(x)=ax^3+(1-4a)x^2+(5a-1)x-5a+3 $ , $g(x)=(1-a)x^3-x^2+(2-a)x-3a-1 $. Prove that:For any real number $x$ ,at least one of $|f(x)|$ and $|g(x)|$ not less than $a+1$.
Problem
Source: China Shenzhen ,12 Aug 2015
Tags: inequalities, algebra
YlOwOlY
13.08.2015 11:56
Note that we have two identities:
\[ \left(1\right) \text{ } f\left(x\right)=\left(x^2-x+2\right)\left(ax+1-3a\right)+\left(a+1\right) \]
\[ \left(2\right) \text{ } g\left(x\right)=\left(x^2-x+2\right)\left(\left(1-a\right)x-a\right)-\left(a+1\right) \]
Suppose that there is a real $ z $ so that $ |f\left(z\right)|, |g\left(z\right)|<a+1 $
then we must have $ \left(z^2-z+2\right)\left(az+1-3a\right)<0 \text{ and } \left(z^2-z+2\right)\left(\left(1-a\right)z-a\right)>0 $
Because $ z^2-z+2=\left(z-\frac{1}{2}\right)^2+\frac{7}{4}>0 $, $ az+1-3a<0 \text{ and } \left(1-a\right)z-a>0 \Leftrightarrow \frac{a}{1-a}<z<\frac{3a-1}{a} $
However, it's impossible that $ \frac{a}{1-a}<\frac{3a-1}{a} \text{for some } a \in \left(0,1\right) $ since it's equivalent to $ \left(2a-1\right)^2<0 $, which is absurd!
In conclusion, for any real $ x $, there is at least one of $ |f\left(x\right)| $ and $ |g\left(x\right)| $ isn't less than $ a+1 $
buzzychaoz
26.03.2016 17:19
Friend's solution: Consider $(1-a)f(x)-ag(x)= (2a-1)^2((x-1)^2+1)+a+1$, by triangle inequality $|(1-a)f(x)|+|ag(x)|\ge |(1-a)f(x)-ag(x)|>a+1$ and we are done.