Problem

Source: Turkish Mathematical Olympiad 2nd Round 1994

Tags: algebra



Let $f: \mathbb{R}^{+}\rightarrow \mathbb{R}+$ be an increasing function. For each $u\in\mathbb{R}^{+}$, we denote $g(u)=\inf\{ f(t)+u/t \mid t>0\}$. Prove that: $(a)$ If $x\leq g(xy)$, then $x\leq 2f(2y)$; $(b)$ If $x\leq f(y)$, then $x\leq 2g(xy)$.