Problem

Source: Junior Olympiad of Malaysia 2013 P4

Tags: combinatorics, games



Let $n$ be a positive integer. A \emph{pseudo-Gangnam Style} is a dance competition between players $A$ and $B$. At time $0$, both players face to the north. For every $k\ge 1$, at time $2k-1$, player $A$ can either choose to stay stationary, or turn $90^{\circ}$ clockwise, and player $B$ is forced to follow him; at time $2k$, player $B$ can either choose to stay stationary, or turn $90^{\circ}$ clockwise, and player $A$ is forced to follow him. After time $n$, the music stops and the competition is over. If the final position of both players is north or east, $A$ wins. If the final position of both players is south or west, $B$ wins. Determine who has a winning strategy when: (a) $n=2013^{2012}$ (b) $n=2013^{2013}$