Problem

Source: 2015 Taiwan TST Round 3 Mock IMO Day 2 Problem 1

Tags: geometry, perpendicular bisector, Taiwan, Taiwan TST 2015



Let $ABC$ be a fixed acute-angled triangle. Consider some points $E$ and $F$ lying on the sides $AC$ and $AB$, respectively, and let $M$ be the midpoint of $EF$. Let the perpendicular bisector of $EF$ intersect the line $BC$ at $K$, and let the perpendicular bisector of $MK$ intersect the lines $AC$ and $AB$ at $S$ and $T$, respectively. If the quadrilateral $KSAT$ is cycle, prove that $\angle{KEF}=\angle{KFE}=\angle{A}$.